Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Ann N Y Acad Sci ; 1506(1): 74-97, 2021 12.
Article in English | MEDLINE | ID: covidwho-1612914

ABSTRACT

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Congresses as Topic/trends , Embryonic Development/physiology , Research Report , Single-Cell Analysis/trends , Animals , Cell Lineage/physiology , Humans , Macrophages/physiology , Single-Cell Analysis/methods
2.
Infect Immun ; 89(12): e0031521, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1575412

ABSTRACT

Mycobacterium tuberculosis is a chronic infectious disease pathogen. To date, tuberculosis is a major infectious disease that endangers human health. To better prevent and treat tuberculosis, it is important to study the pathogenesis of M. tuberculosis. Based on early-stage laboratory research results, in this study, we verified the upregulation of sod2 in Bacillus Calmette-Guérin (BCG) and H37Rv infection. By detecting BCG/H37Rv intracellular survival in sod2-silenced and sod2-overexpressing macrophages, sod2 was found to promote the intracellular survival of BCG/H37Rv. miR-495 then was determined to be downregulated by BCG/H37Rv. BCG/H37Rv can upregulate sod2 expression by miR-495 to promote the intracellular survival of BCG/H37Rv through a decline in ROS levels. This study provides a theoretical basis for developing new drug targets and treating tuberculosis.


Subject(s)
Macrophages/microbiology , Macrophages/physiology , MicroRNAs/genetics , Mycobacterium tuberculosis/physiology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Tuberculosis/etiology , Tuberculosis/metabolism , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Mycobacterium bovis , Superoxide Dismutase/metabolism , Tuberculosis/pathology
3.
Arch Pathol Lab Med ; 145(11): 1328-1340, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1485410

ABSTRACT

CONTEXT.­: SARS-CoV-2 can undergo maternal-fetal transmission, heightening interest in the placental pathology findings from this infection. Transplacental SARS-CoV-2 transmission is typically accompanied by chronic histiocytic intervillositis together with necrosis and positivity of syncytiotrophoblast for SARS-CoV-2. Hofbauer cells are placental macrophages that have been involved in viral diseases, including HIV and Zika virus, but their involvement in SARS-CoV-2 is unknown. OBJECTIVE.­: To determine whether SARS-CoV-2 can extend beyond the syncytiotrophoblast to enter Hofbauer cells, endothelium, and other villous stromal cells in infected placentas of liveborn and stillborn infants. DESIGN.­: Case-based retrospective analysis by 29 perinatal and molecular pathology specialists of placental findings from a preselected cohort of 22 SARS-CoV-2-infected placentas delivered to pregnant women testing positive for SARS-CoV-2 from 7 countries. Molecular pathology methods were used to investigate viral involvement of Hofbauer cells, villous capillary endothelium, syncytiotrophoblast, and other fetal-derived cells. RESULTS.­: Chronic histiocytic intervillositis and trophoblast necrosis were present in all 22 placentas (100%). SARS-CoV-2 was identified in Hofbauer cells from 4 of 22 placentas (18.2%). Villous capillary endothelial staining was positive in 2 of 22 cases (9.1%), both of which also had viral positivity in Hofbauer cells. Syncytiotrophoblast staining occurred in 21 of 22 placentas (95.5%). Hofbauer cell hyperplasia was present in 3 of 22 placentas (13.6%). In the 7 cases having documented transplacental infection of the fetus, 2 (28.6%) occurred in placentas with Hofbauer cell staining positive for SARS-CoV-2. CONCLUSIONS.­: SARS-CoV-2 can extend beyond the trophoblast into the villous stroma, involving Hofbauer cells and capillary endothelial cells, in a small number of infected placentas. Most cases of SARS-CoV-2 transplacental fetal infection occur without Hofbauer cell involvement.


Subject(s)
COVID-19/transmission , COVID-19/virology , Infectious Disease Transmission, Vertical , Macrophages/virology , Placenta/virology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/pathogenicity , Adult , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Endothelium/pathology , Endothelium/virology , Female , Humans , Hyperplasia/pathology , Hyperplasia/virology , Infant, Newborn , Macrophages/pathology , Macrophages/physiology , Male , Placenta/pathology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/pathology , Retrospective Studies , SARS-CoV-2/immunology , Stillbirth , Trophoblasts/pathology , Trophoblasts/virology
4.
Nat Commun ; 12(1): 4567, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328845

ABSTRACT

Few studies have used a longitudinal approach to describe the immune response to SARS-CoV-2 infection. Here, we perform single-cell RNA sequencing of bronchoalveolar lavage fluid cells longitudinally obtained from SARS-CoV-2-infected ferrets. Landscape analysis of the lung immune microenvironment shows distinct changes in cell proportions and characteristics compared to uninfected control, at 2 and 5 days post-infection (dpi). Macrophages are classified into 10 distinct subpopulations with transcriptome changes among monocyte-derived infiltrating macrophages and differentiated M1/M2 macrophages, notably at 2 dpi. Moreover, trajectory analysis reveals gene expression changes from monocyte-derived infiltrating macrophages toward M1 or M2 macrophages and identifies a macrophage subpopulation that has rapidly undergone SARS-CoV-2-mediated activation of inflammatory responses. Finally, we find that M1 or M2 macrophages show distinct patterns of gene modules downregulated by immune-modulatory drugs. Overall, these results elucidate fundamental aspects of the immune response dynamics provoked by SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Macrophages/metabolism , Macrophages/physiology , Animals , Bronchoalveolar Lavage Fluid , Ferrets
5.
Genes (Basel) ; 12(5)2021 04 24.
Article in English | MEDLINE | ID: covidwho-1201763

ABSTRACT

Single-cell RNA sequencing of the bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients has enabled us to examine gene expression changes of human tissue in response to the SARS-CoV-2 virus infection. However, the underlying mechanisms of COVID-19 pathogenesis at single-cell resolution, its transcriptional drivers, and dynamics require further investigation. In this study, we applied machine learning algorithms to infer the trajectories of cellular changes and identify their transcriptional programs. Our study generated cellular trajectories that show the COVID-19 pathogenesis of healthy-to-moderate and healthy-to-severe on macrophages and T cells, and we observed more diverse trajectories in macrophages compared to T cells. Furthermore, our deep-learning algorithm DrivAER identified several pathways (e.g., xenobiotic pathway and complement pathway) and transcription factors (e.g., MITF and GATA3) that could be potential drivers of the transcriptomic changes for COVID-19 pathogenesis and the markers of the COVID-19 severity. Moreover, macrophages-related functions corresponded more to the disease severity compared to T cells-related functions. Our findings more proficiently dissected the transcriptomic changes leading to the severity of a COVID-19 infection.


Subject(s)
Bronchoalveolar Lavage Fluid/virology , COVID-19/etiology , COVID-19/pathology , Macrophages , T-Lymphocytes , Algorithms , COVID-19/genetics , Computational Biology/methods , Gene Expression Profiling , Humans , Machine Learning , Macrophages/physiology , Macrophages/virology , Sequence Analysis, RNA/methods , Single-Cell Analysis , T-Lymphocytes/physiology , T-Lymphocytes/virology
6.
Thorax ; 76(10): 1010-1019, 2021 10.
Article in English | MEDLINE | ID: covidwho-1180971

ABSTRACT

BACKGROUND: Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. METHODS: This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. FINDINGS: Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. INTERPRETATION: The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.


Subject(s)
COVID-19/immunology , Immunity, Cellular/physiology , Inflammation Mediators/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , COVID-19/blood , COVID-19/pathology , Critical Care , Critical Illness , Female , Flow Cytometry , Humans , Macrophages/physiology , Male , Middle Aged , T-Lymphocytes/physiology
7.
Int J Dev Biol ; 64(10-11-12): 465-469, 2020.
Article in English | MEDLINE | ID: covidwho-1159910

ABSTRACT

Mesenchymal stem cells (MSCs) are used as therapeutic agents for the treatment of a wide spectrum of diseases, as well as for the regeneration and healing of burns and wounds. MSCs have an immunomodulatory effect and influence the phenotype and functions of immune cells, including macrophages, which in turn prime and license the MSCs. We discuss the new findings on the feedback loop between MSCs and macrophages and its consequences on the outcome of MSC therapies.


Subject(s)
Macrophages/physiology , Mesenchymal Stem Cells/physiology , Cell Communication , Humans , Macrophages/immunology , Mesenchymal Stem Cell Transplantation
8.
J Am Soc Nephrol ; 31(1): 85-100, 2020 01.
Article in English | MEDLINE | ID: covidwho-992923

ABSTRACT

BACKGROUND: The matricellular protein periostin has been associated with CKD progression in animal models and human biopsy specimens. Periostin functions by interacting with extracellular matrix components to drive collagen fibrillogenesis and remodeling or by signaling through cell-surface integrin receptors to promote cell adhesion, migration, and proliferation. However, its role in AKI is unknown. METHODS: We used mice with conditional tubule-specific overexpression of periostin or knockout mice lacking periostin expression in the renal ischemia-reperfusion injury model, and primary cultures of isolated tubular cells in a hypoxia-reoxygenation model. RESULTS: Tubular epithelial cells showed strong production of periostin during the repair phase of ischemia reperfusion. Periostin overexpression protected mice from renal injury compared with controls, whereas knockout mice showed increased tubular injury and deteriorated renal function. Periostin interacted with its receptor, integrin-ß1, to inhibit tubular cell cycle arrest and apoptosis in in vivo and in vitro models. After ischemia-reperfusion injury, periostin-overexpressing mice exhibited diminished expression of proinflammatory molecules and had more F4/80+ macrophages compared with knockout mice. Macrophages from periostin-overexpressing mice showed increased proliferation and expression of proregenerative factors after ischemia-reperfusion injury, whereas knockout mice exhibited the opposite. Coculturing a macrophage cell line with hypoxia-treated primary tubules overexpressing periostin, or treating such macrophages with recombinant periostin, directly induced macrophage proliferation and expression of proregenerative molecules. CONCLUSIONS: In contrast to the detrimental role of periostin in CKD, we discovered a protective role of periostin in AKI. Our findings suggest periostin may be a novel and important mediator of mechanisms controlling renal repair after AKI.


Subject(s)
Acute Kidney Injury , Cell Adhesion Molecules/physiology , Cell Proliferation , Macrophages/physiology , Acute Kidney Injury/etiology , Animals , Disease Models, Animal , Kidney/blood supply , Male , Mice , Mice, Knockout , Reperfusion Injury/complications , Reperfusion Injury/pathology
9.
Asia Pac J Ophthalmol (Phila) ; 10(1): 114-120, 2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-962768

ABSTRACT

ABSTRACT: Many of the risk factors for developing severe coronavirus disease 2019 (COVID-19) are also risk factors for eye diseases such as age-related macular degeneration (AMD). During the past decades, macrophages and the complement pathway (as a part of the innate immune system) have been identified as important contributors to the development of AMD, and we suggest that these mechanisms are of similar importance for the clinical course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Based on the experience with AMD, we discuss how behavioral factors such as diet, smoking and higher body mass index, as well as genetic determinants such as the complement and immune pathway genes may lead to the overactive inflammatory phenotypes seen in some patients with COVID-19, and may in part explain the heterogeneity of disease manifestations and outcomes. Based on this experience, we discuss potential genetic research projects and elaborate on preventive and treatment approaches related to COVID-19.


Subject(s)
COVID-19/immunology , Complement System Proteins/physiology , Inflammation/immunology , Macrophages/physiology , Macular Degeneration/immunology , SARS-CoV-2 , Aging/physiology , Animals , COVID-19/physiopathology , Health Risk Behaviors , Humans , Immunity, Innate , Macular Degeneration/physiopathology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL